# министерство просвещения российской федерации

МБОУ "СОШ №1 им. А.Коцоева с. Гизель" Пригородного муниципального района РСО-А

«COW No1

м.А. Коцовва

СОГЛАСОВАНО

Заместитель директора

поУВР

Ф.М.Яхъяева

Приказ№63 от «31» 08. 2023г. **УТВЕРЖДЕНО** 

Врио директора

А.Дзестелова

Приказ№63 т «31» 08. 2023г.

#### РАБОЧАЯ ПРОГРАММА

(ID 3084726)

учебного предмета «Биология. Углубленный уровень»

для обучающихся 10 класса

Учитель биологии: Кокаева Б.Г.

#### ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по учебному предмету "Биология" (далее - биология) на уровне среднего общего образования разработана на основе Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», ФГОС СОО, Концепции преподавания учебного предмета «Биология» и основных положений федеральной рабочей программы воспитания.

Учебный предмет «Биология» углублённого уровня изучения (10–11 классы) является одним из компонентов предметной области «Естественнонаучные предметы». Согласно положениям ФГОС СОО профильные учебные углублённом являются предметы, изучаемые на уровне, дифференциации обучения на уровне среднего общего образования и призваны обеспечить преемственность между основным общим, средним общим, средним профессиональным и высшим образованием. В то же время каждый из этих учебных предметов должен быть ориентирован на приоритетное решение образовательных, воспитательных и развивающих задач, связанных с профориентацией обучающихся и стимулированием интереса к конкретной области научного знания, связанного с биологией, медициной, экологией, психологией, спортом или военным делом.

Программа по учебному предмету "Биология" даёт представление о цели и задачах изучения учебного предмета «Биология» на углублённом уровне, определяет обязательное (инвариантное) предметное содержание, структурирование по разделам и темам, распределение по классам, рекомендует последовательность изучения учебного материала с учётом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей обучающихся. В программе по биологии реализован принцип преемственности с изучением биологии на уровне основного общего благодаря образования, чему просматривается направленность биологических знаний, ориентированных последующее развитие формирование естественно-научного мировоззрения, мышления, представлений о здоровом образе жизни, на воспитание бережного отношения к окружающей природной среде. В программе по биологии также возможности учебного предмета «Биология» в реализации показаны требований ФГОС СОО к планируемым личностным, метапредметным и предметным результатам обучения и в формировании основных видов учебнопознавательной деятельности обучающихся по освоению содержания биологического образования на уровне среднего общего образования.

Учебный предмет «Биология» на уровне среднего общего образования завершает биологическое образование в школе и ориентирован на расширение и углубление знаний обучающихся о живой природе, основах молекулярной и

клеточной биологии, эмбриологии и биологии развития, генетики, селекции, биотехнологии, эволюционного учения и экологии.

Изучение учебного предмета «Биология» на углубленном уровне ориентировано на подготовку обучающихся к последующему получению образования биологического вузах И организациях среднего профессионального образования. Основу его содержания составляет система знаний. полученных биологических при изучении обучающимися соответствующих систематических разделов биологии на уровне основного общего образования, в 10–11 классах эти знания получают развитие. Так, расширены и углублены биологические знания о растениях, животных, грибах, бактериях, организме человека, общих закономерностях жизни, дополнительно включены биологические сведения прикладного и поискового характера, которые можно использовать как ориентиры для последующего выбора профессии. Возможна также интеграция биологических знаний с соответствующими знаниями, полученными обучающимися при изучении физики, химии, географии и математики.

Структура программы по учебному предмету "Биология" отражает системно-уровневый и эволюционный подходы к изучению биологии. Согласно им, изучаются свойства и закономерности, характерные для живых систем разного уровня организации, эволюции органического мира на Земле, сохранения биологического разнообразия планеты. Так, в 10 классе изучаются основы молекулярной и клеточной биологии, эмбриологии и биологии развития, генетики и селекции, биотехнологии и синтетической биологии, актуализируются знания обучающихся по ботанике, зоологии, анатомии, физиологии человека. В 11 классе изучаются эволюционное учение, основы экологии и учение о биосфере.

Учебный «Биология» обеспечить предмет призван освоение обучающимися биологических теорий и законов, идей, принципов и правил, лежащих в основе современной естественно-научной картины мира, знаний о строении, многообразии и особенностях клетки, организма, популяции, биоценоза, экосистемы, о выдающихся научных достижениях, современных исследованиях в биологии, прикладных аспектах биологических знаний. Для развития и поддержания интереса обучающихся к биологии наряду со значительным объёмом теоретического материала в содержании программы по биологии предусмотрено знакомство с историей становления и развития той или иной области биологии, вкладом отечественных и зарубежных учёных в решение важнейших биологических и экологических проблем.

Цель изучения учебного предмета «Биология» на углублённом уровне — овладение обучающимися знаниями о структурно-функциональной

организации живых систем разного ранга и приобретение умений использовать эти знания в формировании интереса к определённой области профессиональной деятельности, связанной с биологией, или к выбору учебного заведения для продолжения биологического образования.

Достижение цели изучения учебного предмета «Биология» на углублённом уровне обеспечивается решением следующих задач:

освоение обучающимися системы биологических знаний: об основных биологических теориях, концепциях, гипотезах, законах, закономерностях и правилах, составляющих современную естественно-научную картину мира; о строении, многообразии и особенностях биологических систем (клетка, организм, популяция, вид, биогеоценоз, биосфера); о выдающихся открытиях и современных исследованиях в биологии;

ознакомление обучающихся с методами познания живой природы: исследовательскими методами биологических наук (молекулярной и клеточной биологии, эмбриологии и биологии развития, генетики и селекции, биотехнологии и синтетической биологии, палеонтологии, экологии); методами самостоятельного проведения биологических исследований в лаборатории и в природе (наблюдение, измерение, эксперимент, моделирование);

овладение обучающимися умениями: самостоятельно находить, анализировать и использовать биологическую информацию; пользоваться биологической терминологией и символикой; устанавливать связь между биологии и социально-экономическими И экологическими проблемами человечества; оценивать последствия своей деятельности по отношению к окружающей природной среде, собственному здоровью и людей; здоровью окружающих обосновывать соблюдать профилактики инфекционных заболеваний, правила поведения в природе и обеспечения безопасности собственной жизнедеятельности в чрезвычайных ситуациях природного И техногенного характера; характеризовать современные научные открытия в области биологии;

развитие у обучающихся интеллектуальных и творческих способностей в процессе знакомства с выдающимися открытиями и современными исследованиями в биологии, решаемыми ею проблемами, методологией биологического исследования, проведения экспериментальных исследований, решения биологических задач, моделирования биологических объектов и процессов;

воспитание у обучающихся ценностного отношения к живой природе в целом и к отдельным её объектам и явлениям; формирование экологической,

генетической грамотности, общей культуры поведения в природе; интеграции естественно-научных знаний;

приобретение обучающимися компетентности В рациональном природопользовании (соблюдение правил поведения в природе, охраны видов, биосферы), сохранении собственного здоровья (соблюдения окружающих людей мер профилактики заболеваний, обеспечение безопасности жизнедеятельности в чрезвычайных ситуациях техногенного характера) основе использования природного на И биологических знаний и умений в повседневной жизни;

создание условий для осознанного выбора обучающимися индивидуальной образовательной траектории, способствующей последующему профессиональному самоопределению, в соответствии с индивидуальными интересами и потребностями региона.

Общее число часов, отведенных на изучение биологии на углубленном уровне среднего общего образования, составляет 204 часа: в 10 классе – 102 часа (3 часа в неделю), в 11 классе – 102 часа (3 часа в неделю).

Отбор организационных форм, методов и средств обучения биологии осуществляется с учётом специфики его содержания и направленности на продолжение биологического образования в организациях среднего профессионального и высшего образования.

Обязательным условием при обучении биологии на углублённом уровне является проведение лабораторных и практических работ. Также участие обучающихся в выполнении проектных и учебно-исследовательских работ, тематика которых определяется учителем на основе имеющихся материально-технических ресурсов и местных природных условий.

#### СОДЕРЖАНИЕ ОБУЧЕНИЯ

#### 10 КЛАСС

Содержание программы, выделенное *курсивом*, не входит в проверку государственной итоговой аттестации (ГИА).

## Тема 1. Биология как наука

Современная биология – комплексная наука. Краткая история развития биологии. Биологические науки и изучаемые ими проблемы. Фундаментальные, прикладные и поисковые научные исследования в биологии.

Значение биологии в формировании современной естественно-научной картины мира. Профессии, связанные с биологией. Значение биологии в практической деятельности человека: медицине, сельском хозяйстве, промышленности, охране природы.

## Демонстрации

Портреты: Аристотель, Теофраст, К. Линней, Ж. Б. Ламарк, Ч. Дарвин, У. Гарвей, Г. Мендель, В. И. Вернадский, И. П. Павлов, И. И. Мечников, Н. И. Вавилов, Н. В. Тимофеев-Ресовский, Дж. Уотсон, Ф. Крик, Д. К. Беляев.

Таблицы и схемы: «Связь биологии с другими науками», «Система биологических наук».

## Тема 2. Живые системы и их изучение

Живые системы как предмет изучения биологии. Свойства живых систем: единство химического состава, дискретность и целостность, сложность и упорядоченность структуры, открытость, самоорганизация, самовоспроизведение, раздражимость, изменчивость, рост и развитие.

Уровни организации живых систем: молекулярный, клеточный, тканевый, организменный, популяционно-видовой, экосистемный (биогеоценотический), биосферный. Процессы, происходящие в живых системах. Основные признаки живого. Жизнь как форма существования материи. Науки, изучающие живые системы на разных уровнях организации.

Изучение живых систем. Методы биологической науки. Наблюдение, измерение, эксперимент, систематизация, метаанализ. Понятие о зависимой и независимой переменной. Планирование эксперимента. Постановка и проверка гипотез. Нулевая гипотеза. Понятие выборки и её достоверность. Разброс в биологических данных. Оценка достоверности полученных результатов. Причины искажения результатов эксперимента. Понятие статистического теста.

## Демонстрации

Таблицы и схемы: «Основные признаки жизни», «Биологические системы», «Свойства живой материи», «Уровни организации живой природы», «Строение животной клетки», «Ткани животных», «Системы органов человеческого организма», «Биогеоценоз», «Биосфера», «Методы изучения живой природы».

Оборудование: лабораторное оборудование для проведения наблюдений, измерений, экспериментов.

**Практическая работа** «Использование различных методов при изучении живых систем».

#### Тема 3. Биология клетки

Клетка — структурно-функциональная единица живого. История открытия клетки. Работы Р. Гука, А. Левенгука. Клеточная теория (Т. Шванн, М. Шлейден, Р. Вирхов). Основные положения современной клеточной теории.

Методы молекулярной и клеточной биологии: микроскопия, хроматография, электрофорез, метод меченых атомов, дифференциальное центрифугирование, культивирование клеток. Изучение фиксированных клеток. Электронная микроскопия. Конфокальная микроскопия. Витальное (прижизненное) изучение клеток.

## Демонстрации

Портреты: Р. Гук, А. Левенгук, Т. Шванн, М. Шлейден, Р. Вирхов, К. М. Бэр.

Таблицы и схемы: «Световой микроскоп», «Электронный микроскоп», «История развития методов микроскопии».

Оборудование: световой микроскоп, микропрепараты растительных, животных и бактериальных клеток.

**Практическая работа** «Изучение методов клеточной биологии (хроматография, электрофорез, дифференциальное центрифугирование, ПЦР)».

## Тема 4. Химическая организация клетки

Химический состав клетки. Макро-, микро- и ультрамикроэлементы. Вода и её роль как растворителя, реагента, участие в структурировании клетки, теплорегуляции. Минеральные вещества клетки, их биологическая роль. Роль катионов и анионов в клетке.

Органические вещества клетки. Биологические полимеры. Белки. Аминокислотный состав белков. Структуры белковой молекулы. Первичная структура белка, пептидная связь. Вторичная, третичная, четвертичная структуры. Денатурация. Свойства белков. Классификация белков. Биологические функции белков. *Прионы*.

Углеводы. Моносахариды, дисахариды, олигосахариды и полисахариды. Общий план строения и физико-химические свойства углеводов. Биологические функции углеводов.

Липиды. Гидрофильно-гидрофобные свойства. Классификация липидов. Триглицериды, фосфолипиды, воски, стероиды. Биологические функции липидов. Общие свойства биологических мембран — текучесть, способность к самозамыканию, полупроницаемость.

Нуклеиновые кислоты. ДНК и РНК. Строение нуклеиновых кислот. Нуклеотиды. Принцип комплементарности. Правило Чаргаффа. Структура ДНК — двойная спираль. Местонахождение и биологические функции ДНК. Виды РНК. Функции РНК в клетке.

Строение молекулы АТФ. Макроэргические связи в молекуле АТФ. Биологические функции АТФ. Восстановленные переносчики, их функции в клетке. Другие нуклеозидтрифосфаты (НТФ). Секвенирование ДНК. Методы геномики, транскриптомики, протеомики.

Структурная биология: биохимические и биофизические исследования состава и пространственной структуры биомолекул. *Моделирование* структуры и функций биомолекул и их комплексов. Компьютерный дизайн и органический синтез биомолекул и их неприродных аналогов.

## Демонстрации

Портреты: Л. Полинг, Дж. Уотсон, Ф. Крик, М. Уилкинс, Р. Франклин, Ф. Сэнгер, С. Прузинер.

Диаграммы: «Распределение химических элементов в неживой природе», «Распределение химических элементов в живой природе».

Таблицы и схемы: «Периодическая таблица химических элементов», «Строение молекулы воды», «Вещества в составе организмов», «Строение молекулы белка», «Структуры белковой молекулы», «Строение молекул углеводов», «Строение молекул липидов», «Нуклеиновые кислоты», «Строение молекулы АТФ».

Оборудование: химическая посуда и оборудование.

**Лабораторная работа** «Обнаружение белков с помощью качественных реакций».

**Лабораторная работа** «Исследование нуклеиновых кислот, выделенных из клеток различных организмов».

## Тема 5. Строение и функции клетки

Типы клеток: эукариотическая и прокариотическая. Структурнофункциональные образования клетки.

Строение прокариотической клетки. Клеточная стенка бактерий и архей. Особенности строения гетеротрофной и автотрофной прокариотических клеток. Место и роль прокариот в биоценозах.

Строение и функционирование эукариотической клетки. Плазматическая мембрана (плазмалемма). Структура плазматической мембраны. Транспорт веществ через плазматическую мембрану: пассивный (диффузия, облегчённая диффузия), активный (первичный и вторичный активный транспорт). Полупроницаемость мембраны. Работа натрий-калиевого насоса. Эндоцитоз: пиноцитоз, фагоцитоз. Экзоцитоз. Клеточная стенка. Структура и функции клеточной стенки растений, грибов.

Цитоплазма. Цитозоль. Цитоскелет. Движение цитоплазмы. Органоиды клетки. Одномембранные органоиды клетки: эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, их строение и функции. Взаимосвязь одномембранных органоидов клетки. Строение гранулярного ретикулума. Механизм направления белков в ЭПС. Синтез растворимых белков. Синтез клеточных мембран. Гладкий (агранулярный) эндоплазматический ретикулум. Секреторная функция аппарата Гольджи. Модификация белков в аппарате Гольджи. Сортировка белков в аппарате Гольджи. Транспорт веществ в клетке. Вакуоли растительных клеток. Клеточный сок. Тургор.

Полуавтономные органоиды клетки: митохондрии, пластиды. *Происхождение митохондрий и пластид*. *Симбиогенез (К.С. Мережковский, Л. Маргулис)*. Строение и функции митохондрий и пластид. Первичные, вторичные и сложные пластиды фотосинтезирующих эукариот. Хлоропласты, хромопласты, лейкопласты высших растений.

Немембранные органоиды клетки Строение и функции немембранных органоидов клетки. Рибосомы. *Промежуточные филаменты*. Микрофиламенты. *Актиновые микрофиламенты*. Мышечные клетки. *Актиновые компоненты немышечных клеток*. Микротрубочки. Клеточный центр. Строение и движение жгутиков и ресничек. Микротрубочки цитоплазмы. Центриоль. *Белки*, ассоциированные с микрофиламентами и микротрубочками. Моторные белки.

Ядро. Оболочка ядра, хроматин, кариоплазма, ядрышки, их строение и функции. Ядерный белковый матрикс. Пространственное расположение хромосом в интерфазном ядре. *Эухроматин и гетерохроматин*. Белки хроматина — гистоны. *Динамика ядерной оболочки в митозе*. *Ядерный транспорт*.

Клеточные включения. Сравнительная характеристика клеток эукариот (растительной, животной, грибной).

#### Демонстрации

Портреты: К.С. Мережковский, Л. Маргулис.

Таблицы и схемы: «Строение эукариотической клетки», «Строение животной клетки», «Строение растительной клетки», «Строение митохондрии», «Ядро», «Строение прокариотической клетки».

Оборудование: световой микроскоп, микропрепараты растительных, животных клеток, микропрепараты бактериальных клеток.

**Лабораторная работа** «Изучение строения клеток различных организмов».

**Практическая работа** «Изучение свойств клеточной мембраны».

**Лабораторная работа** «Исследование плазмолиза и деплазмолиза в растительных клетках».

**Практическая работа** «Изучение движения цитоплазмы в растительных клетках».

## Тема 6. Обмен веществ и превращение энергии в клетке

Ассимиляция и диссимиляция – две стороны метаболизма. Типы обмена веществ: автотрофный и гетеротрофный. Участие кислорода в обменных процессах. Энергетическое обеспечение клетки: превращение АТФ в обменных процессах. Ферментативный характер реакций клеточного метаболизма. Ферменты, их строение, свойства и механизм действия. Коферменты. Отличия ферментов от неорганических катализаторов. Белки-активаторы и белки-ингибиторы. Зависимость скорости ферментативных реакций от различных факторов.

Первичный синтез органических веществ в клетке. Фотосинтез. Аноксигенный и оксигенный фотосинтез у бактерий. Светособирающие пигменты и пигменты реакционного центра. Роль хлоропластов в процессе фотосинтеза. Световая и темновая фазы. Фотодыхание,  $C_{3-}$ ,  $C_{4-}$  и САМ-типы фотосинтеза. Продуктивность фотосинтеза. Влияние различных факторов на скорость фотосинтеза. Значение фотосинтеза.

Хемосинтез. Разнообразие организмов-хемосинтетиков: нитрифицирующие бактерии, железобактерии, серобактерии, водородные бактерии. Значение хемосинтеза.

Анаэробные организмы. Виды брожения. Продукты брожения и их использование человеком. Анаэробные микроорганизмы как объекты биотехнологии и возбудители болезней.

Аэробные организмы. Этапы энергетического обмена. Подготовительный этап. Гликолиз – бескислородное расщепление глюкозы.

Биологическое окисление, или клеточное дыхание. Роль митохондрий в процессах биологического окисления. Циклические реакции. Окислительное фосфорилирование. Энергия мембранного градиента протонов. Синтез АТФ:

работа протонной *АТФ-синтазы*. Преимущества аэробного пути обмена веществ перед анаэробным. Эффективность энергетического обмена.

## Демонстрации

Портреты: Дж. Пристли, К. А. Тимирязев, С. Н. Виноградский, В. А. Энгельгардт, П. Митчелл, Г. А. Заварзин.

Таблицы и схемы: «Фотосинтез», «Энергетический обмен», «Биосинтез белка», «Строение фермента», «Хемосинтез».

Оборудование: световой микроскоп, оборудование для приготовления постоянных и временных микропрепаратов.

**Лабораторная работа** «Изучение каталитической активности ферментов (на примере амилазы или каталазы)».

**Лабораторная работа** «Изучение ферментативного расщепления пероксида водорода в растительных и животных клетках».

**Лабораторная работа** «Сравнение процессов фотосинтеза и хемосинтеза».

**Лабораторная работа** «Сравнение процессов брожения и дыхания».

## Тема 7. Наследственная информация и реализация её в клетке

Реакции матричного синтеза. Принцип комплементарности в реакциях матричного синтеза. Реализация наследственной информации. Генетический код, его свойства. Транскрипция — матричный синтез РНК. Принципы транскрипции: комплементарность, антипараллельность, асимметричность. Созревание матричных РНК в эукариотической клетке. Некодирующие РНК.

Трансляция и её этапы. Участие транспортных РНК в биосинтезе белка. Условия биосинтеза белка. Кодирование аминокислот. Роль рибосом в биосинтезе белка.

Современные представления о строении генов. Организация генома у прокариот и эукариот. Регуляция активности генов у прокариот. Гипотеза оперона (Ф. Жакоб, Ж. Мано). Молекулярные механизмы экспрессии генов у эукариот. Роль хроматина в регуляции работы генов. Регуляция обменных процессов в клетке. Клеточный гомеостаз.

Вирусы – неклеточные формы жизни и облигатные паразиты. Строение простых и сложных вирусов, ретровирусов, бактериофагов. Жизненный цикл ДНК-содержащих вирусов, РНК-содержащих вирусов, бактериофагов. Обратная транскрипция, ревертаза, интеграза.

Вирусные заболевания человека, животных, растений. СПИД, COVID-19, социальные и медицинские проблемы.

Биоинформатика: интеграция и анализ больших массивов («bigdata») структурных биологических данных. Нанотехнологии в биологии и медицине. Программируемые функции белков. Способы доставки лекарств.

## Демонстрации

Портреты: Н. К. Кольцов, Д. И. Ивановский.

Таблицы и схемы: «Биосинтез белка», «Генетический код», «Вирусы», «Бактериофаги».

**Практическая работа** «Создание модели вируса».

#### Тема 8. Жизненный цикл клетки

Клеточный цикл, его периоды и регуляция. Интерфаза и митоз. Особенности процессов, протекающих в интерфазе. Подготовка клетки к делению. Пресинтетический (постмитотический), синтетический и постсинтетический (премитотический) периоды интерфазы.

Матричный синтез ДНК – репликация. Принципы репликации ДНК: комплементарность, полуконсервативный синтез, антипараллельность. Механизм репликации ДНК. Хромосомы. Строение хромосом. Теломеры и теломераза. Хромосомный набор клетки – кариотип. Диплоидный и гаплоидный наборы хромосом. Гомологичные хромосомы. Половые хромосомы.

Деление клетки – митоз. Стадии митоза и происходящие в них процессы. Типы митоза. Кариокинез и цитокинез. Биологическое значение митоза.

Регуляция митотического цикла клетки. Программируемая клеточная гибель – апоптоз.

Клеточное ядро, хромосомы, функциональная геномика. *Механизмы* пролиферации, дифференцировки, старения и гибели клеток. «Цифровая клетка» – биоинформатические модели функционирования клетки.

## Демонстрации

Таблицы и схемы: «Жизненный цикл клетки», «Митоз», «Строение хромосом», «Репликация ДНК».

Оборудование: световой микроскоп, микропрепараты: «Митоз в клетках корешка лука».

**Лабораторная работа** «Изучение хромосом на готовых микропрепаратах».

**Лабораторная работа** «Наблюдение митоза в клетках кончика корешка лука (на готовых микропрепаратах)».

## Тема 9. Строение и функции организмов

Биологическое разнообразие организмов. Одноклеточные, колониальные, многоклеточные организмы.

Особенности строения и жизнедеятельности одноклеточных организмов. Бактерии, археи, одноклеточные грибы, одноклеточные водоросли, другие протисты. Колониальные организмы.

Взаимосвязь частей многоклеточного организма. Ткани, органы и системы органов. Организм как единое целое. Гомеостаз.

Ткани растений. Типы растительных тканей: образовательная, покровная, проводящая, основная, механическая. Особенности строения, функций и расположения тканей в органах растений.

Ткани животных и человека. Типы животных тканей: эпителиальная, соединительная, мышечная, нервная. Особенности строения, функций и расположения тканей в органах животных и человека.

Органы. Вегетативные и генеративные органы растений. Органы и системы органов животных и человека. Функции органов и систем органов.

Опора тела организмов. Каркас растений. Скелеты одноклеточных и многоклеточных животных. Наружный и внутренний скелет. Строение и типы соединения костей.

Движение организмов. Движение одноклеточных организмов: амёбоидное, жгутиковое, ресничное. Движение многоклеточных растений: тропизмы и настии. Движение многоклеточных животных и человека: мышечная система. Рефлекс. Скелетные мышцы и их работа.

Питание организмов. Поглощение воды, углекислого газа и минеральных веществ растениями. Питание животных. Внутриполостное и внутриклеточное пищеварение. Питание позвоночных животных. Отделы пищеварительного тракта. Пищеварительные железы. Пищеварительная система человека.

Дыхание организмов. Дыхание растений. Дыхание животных. Диффузия газов через поверхность клетки. Кожное дыхание. Дыхательная поверхность. Жаберное и лёгочное дыхание. Дыхание позвоночных животных и человека. Эволюционное усложнение строения лёгких позвоночных животных. Дыхательная система человека. Механизм вентиляции лёгких у птиц и млекопитающих. Регуляция дыхания. Дыхательные объёмы.

Транспорт веществ у организмов. Транспортные системы растений. Транспорт веществ у животных. Кровеносная система и её органы. Кровеносная система позвоночных животных и человека. Сердце, кровеносные сосуды и кровь. Круги кровообращения. Эволюционные усложнения строения кровеносной системы позвоночных животных. Работа сердца и её регуляция.

Выделение у организмов. Выделение у растений. Выделение у животных. Сократительные вакуоли. Органы выделения. Фильтрация, секреция и обратное всасывание как механизмы работы органов выделения. Связь полости тела с кровеносной и выделительной системами. Выделение у

позвоночных животных и человека. Почки. Строение и функционирование нефрона. Образование мочи у человека.

Защита у организмов. Защита у одноклеточных организмов. Споры бактерий и цисты простейших. Защита у многоклеточных растений. Кутикула. Средства пассивной и химической защиты. Фитонциды.

Защита у многоклеточных животных. Покровы и их производные. Защита организма от болезней. Иммунная система человека. Клеточный и гуморальный иммунитет. Врождённый и приобретённый специфический иммунитет. Теория клонально-селективного иммунитета (П. Эрлих, Ф. М. Бернет, С. Тонегава). Воспалительные ответы организмов. Роль врождённого иммунитета в развитии системных заболеваний.

Раздражимость и регуляция у организмов. Раздражимость у одноклеточных организмов. Таксисы. Раздражимость и регуляция у растений. Ростовые вещества и их значение.

Нервная система и рефлекторная регуляция у животных. Нервная система и её отделы. Эволюционное усложнение строения нервной системы у животных. Отделы головного мозга позвоночных животных. Рефлекс и рефлекторная дуга. Безусловные и условные рефлексы.

Гуморальная регуляция и эндокринная система животных и человека. Железы эндокринной системы и их гормоны. Действие гормонов. Взаимосвязь нервной и эндокринной систем. Гипоталамо-гипофизарная система.

## Демонстрации

Портрет: И. П. Павлов.

Таблицы и схемы: «Одноклеточные водоросли», «Многоклеточные водоросли», «Бактерии», «Простейшие», «Органы цветковых растений», «Системы органов позвоночных животных», «Внутреннее насекомых», «Ткани растений», «Корневые системы», «Строение стебля», «Строение листовой пластинки», «Ткани животных», «Скелет человека», «Кровеносная «Пищеварительная система», система», «Дыхательная система», «Нервная система», «Кожа», «Мышечная система», «Выделительная система», «Эндокринная система», «Строение мышцы», «Иммунитет», «Кишечнополостные», «Схема питания растений», животных», «Строение «Кровеносные системы позвоночных гидры», «Строение планарии», «Внутреннее строение дождевого червя», «Нервная рыб», «Нервная «Нервная система система лягушки», система пресмыкающихся», «Нервная система птиц», «Нервная система млекопитающих», «Нервная система человека», «Рефлекс».

Оборудование: световой микроскоп, микропрепараты одноклеточных организмов, микропрепараты тканей, раковины моллюсков, коллекции

насекомых, иглокожих, живые экземпляры комнатных растений, гербарии растений разных отделов, влажные препараты животных, скелеты позвоночных, коллекции беспозвоночных животных, скелет человека, оборудование для демонстрации почвенного и воздушного питания растений, расщепления крахмала и белков под действием ферментов, оборудование для демонстрации опытов по измерению жизненной ёмкости лёгких, механизма дыхательных движений, модели головного мозга различных животных.

Лабораторная работа «Изучение тканей растений».

**Лабораторная работа** «Изучение тканей животных».

Лабораторная работа «Изучение органов цветкового растения».

## Тема 10. Размножение и развитие организмов

Формы размножения организмов: бесполое (включая вегетативное) и половое. Виды бесполого размножения: почкование, споруляция, фрагментация, клонирование.

Половое размножение. Половые клетки, или гаметы. Мейоз. Стадии мейоза. Поведение хромосом в мейозе. Кроссинговер. Биологический смысл мейоза и полового процесса. Мейоз и его место в жизненном цикле организмов.

Предзародышевое развитие. Гаметогенез у животных. Половые железы. Образование и развитие половых клеток. Сперматогенез и оогенез. Строение половых клеток.

Оплодотворение и эмбриональное развитие животных. Способы оплодотворения: наружное, внутреннее. Партеногенез.

Индивидуальное развитие организмов (онтогенез). Эмбриология – наука о развитии организмов. Морфогенез – одна из главных проблем эмбриологии. морфогенов и модели морфогенеза. Стадии эмбриогенеза Концепция (на лягушки). Дробление. животных примере Типы дробления. Детерминированное и недерминированное дробление. Бластула, бластул. Особенности дробления млекопитающих. Зародышевые листки (гаструляция). Закладка органов и тканей из зародышевых листков. Взаимное влияние частей развивающегося зародыша (эмбриональная индукция). Закладка плана строения животного как результат иерархических взаимодействий генов. Влияние на эмбриональное развитие различных факторов окружающей среды.

Рост и развитие животных. Постэмбриональный период. Прямое и непрямое развитие. Развитие с метаморфозом у беспозвоночных и позвоночных животных. Биологическое значение прямого и непрямого развития, их распространение в природе. Типы роста животных. Факторы регуляции роста животных и человека. Стадии постэмбрионального развития

у животных и человека. Периоды онтогенеза человека. Старение и смерть как биологические процессы.

Размножение и развитие растений. Гаметофит и спорофит. Мейоз в жизненном цикле растений. Образование спор в процессе мейоза. Гаметогенез у растений. Оплодотворение и развитие растительных организмов. Двойное оплодотворение у цветковых растений. Образование и развитие семени.

Механизмы регуляции онтогенеза у растений и животных.

## Демонстрации

Портреты: С. Г. Навашин, Х. Шпеман.

Таблицы и схемы: «Вегетативное размножение», «Типы бесполого размножения», «Размножение хламидомонады», «Размножение эвглены», «Размножение гидры», «Мейоз», «Хромосомы», «Гаметогенез», «Строение яйцеклетки и сперматозоида», «Основные стадии онтогенеза», «Прямое и непрямое развитие», «Развитие майского жука», «Развитие саранчи», «Развитие лягушки», «Двойное оплодотворение у цветковых растений», «Строение семян однодольных и двудольных растений», «Жизненный цикл морской капусты», «Жизненный цикл мха», «Жизненный цикл папоротника», «Жизненный цикл сосны».

Оборудование: световой микроскоп, микропрепараты яйцеклеток и сперматозоидов, модель «Цикл развития лягушки».

**Лабораторная работа** «Изучение строения половых клеток на готовых микропрепаратах».

**Практическая работа** «Выявление признаков сходства зародышей позвоночных животных».

**Лабораторная работа** «Строение органов размножения высших растений».

# **Тема 11.** Генетика – наука о наследственности и изменчивости организмов

История становления и развития генетики как науки. Работы Г. Менделя, Г. де Фриза, Т. Моргана. Роль отечественных учёных в развитии генетики. Работы Н. К. Кольцова, Н. И. Вавилова, А. Н. Белозерского, Г. Д. Карпеченко, Ю. А. Филипченко, Н. В. Тимофеева-Ресовского.

Основные генетические понятия и символы. Гомологичные хромосомы, аллельные гены, альтернативные признаки, доминантный и рецессивный признак, гомозигота, гетерозигота, чистая линия, гибриды, генотип, фенотип. Основные методы генетики: гибридологический, цитологический, молекулярно-генетический.

## Демонстрации

Портреты: Г. Мендель, Г. де Фриз, Т. Морган, Н. К. Кольцов, Н. И. Вавилов, А. Н. Белозерский, Г. Д. Карпеченко, Ю. А. Филипченко, Н. В. Тимофеев-Ресовский.

Таблицы и схемы: «Методы генетики», «Схемы скрещивания».

**Лабораторная работа** «Дрозофила как объект генетических исследований».

## Тема 12. Закономерности наследственности

Моногибридное скрещивание. Первый закон Менделя — закон единообразия гибридов первого поколения. Правило доминирования. Второй закон Менделя — закон расщепления признаков. Цитологические основы моногибридного скрещивания. Гипотеза чистоты гамет.

Анализирующее скрещивание. Промежуточный характер наследования. Расщепление признаков при неполном доминировании.

Дигибридное скрещивание. Третий закон Менделя — закон независимого наследования признаков. Цитологические основы дигибридного скрещивания.

Сцепленное наследование признаков. Работы Т. Моргана. Сцепленное наследование генов, нарушение сцепления между генами. Хромосомная теория наследственности.

Генетика пола. Хромосомный механизм определения пола. Аутосомы и половые хромосомы. Гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом. Наследование признаков, сцепленных с полом.

Генотип как целостная система. Плейотропия – множественное действие гена. Множественный аллелизм. Взаимодействие неаллельных генов. Комплементарность. Эпистаз. Полимерия.

Генетический контроль развития растений, животных и человека, а также физиологических процессов, поведения и когнитивных функций. Генетические механизмы симбиогенеза, механизмы взаимодействия «хозяин – паразит» и «хозяин – микробиом». Генетические аспекты контроля и изменения наследственной информации в поколениях клеток и организмов.

## Демонстрации

Портреты: Г. Мендель, Т. Морган.

Таблицы и схемы: «Первый и второй законы Менделя», «Третий закон Менделя», «Анализирующее скрещивание», «Неполное доминирование», «Сцепленное наследование признаков у дрозофилы», «Генетика пола», «Кариотип человека», «Кариотип дрозофилы», «Кариотип птицы», «Множественный аллелизм», «Взаимодействие генов».

Оборудование: модель для демонстрации законов единообразия гибридов первого поколения и расщепления признаков, модель для демонстрации закона независимого наследования признаков, модель для

демонстрации сцепленного наследования признаков, световой микроскоп, микропрепарат: «Дрозофила».

**Практическая работа** «Изучение результатов моногибридного скрещивания у дрозофилы».

**Практическая работа** «Изучение результатов дигибридного скрещивания у дрозофилы».

## Тема 13. Закономерности изменчивости

Взаимодействие генотипа и среды при формировании фенотипа. Изменчивость признаков. Качественные и количественные признаки. Виды изменчивости: ненаследственная и наследственная.

Модификационная изменчивость. Роль среды в формировании модификационной изменчивости. Норма реакции признака. Вариационный ряд и вариационная кривая (В. Иоганнсен). Свойства модификационной изменчивости.

Генотипическая изменчивость. Свойства генотипической изменчивости. Виды генотипической изменчивости: комбинативная, мутационная.

Комбинативная изменчивость. Мейоз и половой процесс — основа комбинативной изменчивости. Роль комбинативной изменчивости в создании генетического разнообразия в пределах одного вида.

Мутационная изменчивость. Виды мутаций: генные, хромосомные, геномные. Спонтанные индуцированные мутации. Ядерные цитоплазматические мутации. Соматические и половые мутации. Причины Мутагены мутаций. И ИХ влияние возникновения Закономерности мутационного процесса. Закон гомологических рядов в наследственной изменчивости (Н.И. Вавилов). Внеядерная изменчивость и наследственность.

Эпигенетика и эпигеномика, роль эпигенетических факторов в наследовании и изменчивости фенотипических признаков у организмов.

## Демонстрации

Портреты: Г. де Фриз, В. Иоганнсен, Н. И. Вавилов.

Таблицы и схемы: «Виды изменчивости», «Модификационная изменчивость», «Комбинативная изменчивость», «Мейоз», «Оплодотворение», «Генетические заболевания человека», «Виды мутаций».

Оборудование: живые и гербарные экземпляры комнатных растений, рисунки (фотографии) животных с различными видами изменчивости.

**Лабораторная работа** «Исследование закономерностей модификационной изменчивости. Построение вариационного ряда и вариационной кривой».

**Практическая работа** «Мутации у дрозофилы (на готовых микропрепаратах)».

#### Тема 14. Генетика человека

Кариотип человека. Международная программа исследования генома Методы изучения генеалогический, человека. генетики человека: близнецовый, цитогенетический, популяционно-статистический, молекулярно-генетический. Современное определение генотипа: полногеномное секвенирование, генотипирование, в том числе с помощью ПЦР-анализа. Наследственные заболевания человека. Генные и хромосомные болезни человека. Болезни с наследственной предрасположенностью. Значение медицинской генетики в предотвращении и лечении генетических заболеваний человека. Медико-генетическое консультирование. Стволовые клетки. Понятие «генетического груза». Этические аспекты исследований в области редактирования генома и стволовых клеток.

Генетические факторы повышенной чувствительности человека к физическому и химическому загрязнению окружающей среды. Генетическая предрасположенность человека к патологиям.

## Демонстрации

Таблицы и схемы: «Кариотип человека», «Методы изучения генетики человека», «Генетические заболевания человека».

**Практическая работа** «Составление и анализ родословной».

## Тема 15. Селекция организмов

Доместикация и селекция. Зарождение селекции и доместикации. Учение Н. И. Вавилова о Центрах происхождения и многообразия культурных растений. Роль селекции в создании сортов растений и пород животных. Сорт, порода, штамм. Закон гомологических рядов в наследственной изменчивости Н. И. Вавилова, его значение для селекционной работы.

Методы селекционной работы. Искусственный отбор: массовый и индивидуальный. Этапы комбинационной селекции. Испытание производителей по потомству. Отбор по генотипу с помощью оценки фенотипа потомства и отбор по генотипу с помощью анализа ДНК.

Искусственный мутагенез как метод селекционной работы. Радиационный и химический мутагенез как источник мутаций у культурных форм организмов. Использование геномного редактирования и методов рекомбинантных ДНК для получения исходного материала для селекции.

Получение полиплоидов. Внутривидовая гибридизация. Близкородственное скрещивание, или инбридинг. Неродственное скрещивание, или аутбридинг. Гетерозис и его причины. Использование гетерозиса в селекции. Отдалённая гибридизация. Преодоление бесплодия

межвидовых гибридов. Достижения селекции растений и животных. *«Зелёная революция»*.

Сохранение и изучение генетических ресурсов культурных растений и их диких родичей для создания новых сортов и гибридов сельскохозяйственных культур. Изучение, сохранение и управление генетическими ресурсами сельскохозяйственных и промысловых животных в целях улучшения существующих и создания новых пород, линий и кроссов, в том числе с применением современных методов научных исследований, передовых идей и перспективных технологий.

## Демонстрации

Портреты: Н. И. Вавилов, И. В. Мичурин, Г. Д. Карпеченко, П. П. Лукьяненко, Б. Л. Астауров, Н. Борлоуг, Д. К. Беляев.

Таблицы и схемы: «Центры происхождения и многообразия культурных растений», «Закон гомологических рядов в наследственной изменчивости», «Методы селекции», «Отдалённая гибридизация», «Мутагенез».

**Лабораторная работа** «Изучение сортов культурных растений и пород домашних животных».

Лабораторная работа «Изучение методов селекции растений».

**Практическая работа** «Прививка растений».

Экскурсия «Основные методы и достижения селекции растений и животных (на селекционную станцию, племенную ферму, сортоиспытательный участок, в тепличное хозяйство, в лабораторию агроуниверситета или научного центра)».

#### Тема 16. Биотехнология и синтетическая биология

Объекты, используемые в биотехнологии, – клеточные и тканевые культуры, микроорганизмы, их характеристика. Традиционная биотехнология: хлебопечение, получение кисломолочных продуктов, виноделие. Микробиологический синтез. Объекты микробиологических технологий. Производство белка, аминокислот и витаминов.

Создание технологий и инструментов целенаправленного изменения и конструирования геномов с целью получения организмов и их компонентов, содержащих не встречающиеся в природе биосинтетические пути.

Клеточная инженерия. Методы культуры клеток и тканей растений и животных. Криобанки. Соматическая гибридизация и соматический эмбриогенез. Использование гаплоидов в селекции растений. Получение моноклональных антител. Использование моноклональных и поликлональных антител в медицине. Искусственное оплодотворение. Реконструкция яйцеклеток и клонирование животных. Метод трансплантации ядер клеток.

Технологии оздоровления, культивирования и микроклонального размножения сельскохозяйственных культур.

Хромосомная и генная инженерия. Искусственный синтез гена и конструирование рекомбинантных ДНК. Создание трансгенных организмов. Достижения и перспективы хромосомной и генной инженерии. Экологические и этические проблемы генной инженерии.

Медицинские биотехнологии. Постгеномная цифровая медицина. ПЦРдиагностика. Метаболомный анализ, геноцентрический анализ протеома человека для оценки состояния его здоровья. Использование стволовых клеток. Таргетная терапия рака. 3D-биоинженерия для разработки фундаментальных основ медицинских технологий, создания комплексных тканей сочетанием технологий трёхмерного биопринтинга и скаффолдинга для решения задач персонализированной медицины.

Создание векторных вакцин с целью обеспечения комбинированной защиты от возбудителей ОРВИ, установление молекулярных механизмов функционирования РНК-содержащих вирусов, вызывающих особо опасные заболевания человека и животных.

## Демонстрации

Таблицы и схемы: «Использование микроорганизмов в промышленном производстве», «Клеточная инженерия», «Генная инженерия».

**Лабораторная работа** «Изучение объектов биотехнологии».

**Практическая работа** «Получение молочнокислых продуктов».

Экскурсия «Биотехнология — важнейшая производительная сила современности (на биотехнологическое производство)».

## ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

|       |                                                               | Количество | часов                 | Электронные            |                                          |
|-------|---------------------------------------------------------------|------------|-----------------------|------------------------|------------------------------------------|
| № п/п | Наименование разделов и тем программы                         | Всего      | Контрольные<br>работы | Практические<br>работы | (цифровые)<br>образовательные<br>ресурсы |
| 1     | Биология как наука                                            | 1          |                       |                        |                                          |
| 2     | Живые системы и их изучение                                   | 2          |                       |                        |                                          |
| 3     | Биология клетки                                               | 2          |                       | 0.5                    |                                          |
| 4     | Химическая организация клетки                                 | 10         |                       | 1                      |                                          |
| 5     | Строение и функции клетки                                     | 8          |                       | 2                      |                                          |
| 6     | Обмен веществ и превращение энергии в<br>клетке               | 9          |                       | 1                      |                                          |
| 7     | Наследственная информация и реализация её в клетке            | 9          |                       | 0.5                    |                                          |
| 8     | Жизненный цикл клетки                                         | 6          |                       | 1                      |                                          |
| 9     | Строение и функции организмов                                 | 17         |                       | 1.5                    |                                          |
| 10    | Размножение и развитие организмов                             | 8          |                       | 1.5                    |                                          |
| 11    | Генетика – наука о наследственности и изменчивости организмов | 2          |                       | 0.5                    |                                          |
| 12    | Закономерности наследственности                               | 10         |                       | 1                      |                                          |
| 13    | Закономерности изменчивости                                   | 6          |                       | 1                      |                                          |
| 14    | Генетика человека                                             | 3          |                       | 0.5                    |                                          |
| 15    | Селекция организмов                                           | 4          |                       | 1                      |                                          |
| 16    | Биотехнология и синтетическая биология                        | 4          |                       |                        |                                          |
| 17    | Резервное время                                               | 1          |                       |                        |                                          |
| ОБЩЕЕ | КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ                                 | 102        | 0                     | 13                     |                                          |

# ПОУРОЧНОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

| No  | Тема урока                                                                                                                                                                 | Количество часов |                       |                        | Дата изучения |        | Электронные<br>цифровые    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|------------------------|---------------|--------|----------------------------|
| п/п |                                                                                                                                                                            | Всего            | Контрольные<br>работы | Практические<br>работы | п.            | Ф.     | образовательные<br>ресурсы |
| 1   | Биология как комплексная наука и как часть современного общества                                                                                                           | 1                |                       |                        | 5.09          | 5.09   |                            |
| 2   | Живые системы и их свойства                                                                                                                                                | 1                |                       |                        | 6.09.         | 6.09.  |                            |
| 3   | Уровневая организация живых систем                                                                                                                                         | 1                |                       |                        | 8.09.         | 8.09.  |                            |
| 4   | История открытия и изучения клетки.<br>Клеточная теория                                                                                                                    | 1                |                       |                        | 12.09.        | 12.09. |                            |
| 5   | Методы молекулярной и клеточной биологии. Практическая работа «Изучение методов клеточной биологии (хроматография, электрофорез, дифференциальное центрифугирование, ПЦР)» | 1                |                       | 0.5                    | 13.09         | 13.09  |                            |
| 6   | Химический состав клетки                                                                                                                                                   | 1                |                       |                        | 15.09         | 15.09  |                            |
| 7   | Минеральные вещества клетки, их биологическая роль                                                                                                                         | 1                |                       |                        | 19.09         | 19.09  |                            |
| 8   | Органические вещества клетки — белки. Лабораторная работа «Обнаружение белков с помощью качественных реакций»                                                              | 1                |                       | 0.5                    | 20.09         | 20.09  |                            |
| 9   | Свойства, классификация и функции белков                                                                                                                                   | 1                |                       |                        | 22.09         | 22.09  |                            |
| 10  | Органические вещества клетки —<br>углеводы                                                                                                                                 | 1                |                       |                        | 26.09         | 26.09  |                            |

| 11 | Органические вещества клетки — липиды                                                                                                       | 1 |     | 27.09  | 27.09  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|---|-----|--------|--------|
| 12 | Нуклеиновые кислоты. ДНК и РНК. Лабораторная работа «Исследование нуклеиновых кислот, выделенных из клеток различных организмов»            | 1 | 0.5 | 29.09. | 29.09. |
| 13 | Строение и функции АТФ. Другие нуклеозидтрифосфаты (НТФ)                                                                                    | 1 |     | 3.10   | 3.10   |
| 14 | Секвенирование ДНК. Методы геномики, транскриптомики, протеомики                                                                            | 1 |     | 4.10   | 4.10   |
| 15 | Методы структурной биологии                                                                                                                 | 1 |     | 6.10   | 6.10   |
| 16 | Типы клеток. Прокариотическая<br>клетка                                                                                                     | 1 |     | 10.10  | 10.10  |
| 17 | Строение эукариотической клетки. Практическая работа «Изучение свойств клеточной мембраны»                                                  | 1 | 0.5 | 11.10. | 11.10. |
| 18 | Поверхностный аппарат клетки                                                                                                                | 1 |     | 13.10. | 13.10. |
| 19 | Одномембранные органоиды клетки. Практическая работа «Изучение движения цитоплазмы в растительных клетках»                                  | 1 | 0.5 | 17.10. | 17.10. |
| 20 | Полуавтономные органоиды клетки: митохондрии, пластиды. Лабораторная работа «Исследование плазмолиза и деплазмолиза в растительных клетках» | 1 | 0.5 | 18.10. | 18.10. |
| 21 | Немембранные органоиды клетки                                                                                                               | 1 |     | 20.10  | 20.10  |
| 22 | Строение и функции ядра                                                                                                                     | 1 |     | 24.10  | 24.10  |

| 23 | Сравнительная характеристика клеток эукариот. Лабораторная работа «Изучение строения клеток различных организмов»                                                               | 1 | 0.5 | 25.10 | 25.10 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|-------|-------|
| 24 | Ассимиляция и диссимиляция — две стороны метаболизма. Типы обмена веществ. Лабораторная работа «Изучение каталитической активности ферментов (на примере амилазы или каталазы)» | 1 |     | 27.10 | 27.10 |
| 25 | Ферментативный характер реакций клеточного метаболизма. Лабораторная работа «Изучение ферментативного расщепления пероксида водорода в растительных и животных клетках»         | 1 | 0.5 |       |       |
| 26 | Белки-активаторы и белки-<br>ингибиторы                                                                                                                                         | 1 |     |       |       |
| 27 | Автотрофный тип обмена веществ                                                                                                                                                  | 1 |     |       |       |
| 28 | Фотосинтез                                                                                                                                                                      | 1 |     |       |       |
| 29 | Хемосинтез. Лабораторная работа<br>«Сравнение процессов фотосинтеза и<br>хемосинтеза»                                                                                           | 1 | 0.5 |       |       |
| 30 | Анаэробные организмы. Виды брожения. Лабораторная работа «Сравнение процессов брожения и дыхания»                                                                               | 1 |     |       |       |
| 31 | Аэробные организмы. Этапы энергетического обмена                                                                                                                                | 1 |     |       |       |

| 32 | Энергия мембранного градиента протонов. Синтез АТФ: работа протонной АТФ-синтазы                      | 1 |     |  |
|----|-------------------------------------------------------------------------------------------------------|---|-----|--|
| 33 | Реакции матричного синтеза                                                                            | 1 |     |  |
| 34 | Транскрипция — матричный синтез РНК                                                                   | 1 |     |  |
| 35 | Трансляция и её этапы                                                                                 | 1 |     |  |
| 36 | Кодирование аминокислот. Роль рибосом в биосинтезе белка                                              | 1 |     |  |
| 37 | Организация генома у прокариот и<br>эукариот                                                          | 1 |     |  |
| 38 | Молекулярные механизмы экспрессии генов у эукариот                                                    | 1 |     |  |
| 39 | Вирусы — внеклеточные формы жизни и облигатные паразиты. Практическая работа «Создание модели вируса» | 1 | 0.5 |  |
| 40 | Вирусные заболевания человека, животных, растений                                                     | 1 |     |  |
| 41 | Нанотехнологии в биологии и медицине                                                                  | 1 |     |  |
| 42 | Жизненный цикл клетки                                                                                 | 1 |     |  |
| 43 | Матричный синтез ДНК                                                                                  | 1 |     |  |
| 44 | Хромосомы. Лабораторная работа «Изучение хромосом на готовых микропрепаратах»                         | 1 | 0.5 |  |
| 45 | Деление клетки — митоз                                                                                | 1 |     |  |
| 46 | Типы клеток. Кариокинез и цитокинез. Лабораторная работа «Наблюдение митоза в клетках                 | 1 | 0.5 |  |

|    | кончика корешка лука (на готовых микропрепаратах)»                                  |   |     |  |  |
|----|-------------------------------------------------------------------------------------|---|-----|--|--|
| 47 | Регуляция жизненного цикла клеток                                                   | 1 |     |  |  |
| 48 | Организм как единое целое                                                           | 1 |     |  |  |
| 49 | Ткани растений. Лабораторная работа «Изучение тканей растений»                      | 1 | 0.5 |  |  |
| 50 | Ткани животных и человека. Лабораторная работа «Изучение тканей животных»           | 1 | 0.5 |  |  |
| 51 | Органы. Системы органов. Лабораторная работа «Изучение органов цветкового растения» | 1 | 0.5 |  |  |
| 52 | Опора тела организмов                                                               | 1 |     |  |  |
| 53 | Движение организмов                                                                 | 1 |     |  |  |
| 54 | Питание организмов                                                                  | 1 |     |  |  |
| 55 | Питание позвоночных животных.<br>Пищеварительная система человека                   | 1 |     |  |  |
| 56 | Дыхание организмов                                                                  | 1 |     |  |  |
| 57 | Дыхание позвоночных животных и<br>человека                                          | 1 |     |  |  |
| 58 | Транспорт веществ у организмов                                                      | 1 |     |  |  |
| 59 | Кровеносная система позвоночных животных и человека                                 | 1 |     |  |  |
| 60 | Выделение у организмов                                                              | 1 |     |  |  |
| 61 | Защита у организмов                                                                 | 1 |     |  |  |
| 62 | Иммунная система человека                                                           | 1 |     |  |  |
| 63 | Раздражимость и регуляция у<br>организмов                                           | 1 |     |  |  |

| 64 | Гуморальная регуляция и эндокринная система животных и человека                                                                       | 1 |     |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------|---|-----|--|
| 65 | Формы размножения организмов                                                                                                          | 1 |     |  |
| 66 | Половое размножение                                                                                                                   | 1 |     |  |
| 67 | Мейоз                                                                                                                                 | 1 |     |  |
| 68 | Гаметогенез. Образование и развитие половых клеток. Лабораторная работа «Изучение строения половых клеток на готовых микропрепаратах» | 1 | 0.5 |  |
| 69 | Индивидуальное развитие организмов — онтогенез                                                                                        | 1 |     |  |
| 70 | Закладка органов и тканей из зародышевых листков                                                                                      | 1 |     |  |
| 71 | Рост и развитие животных. Лабораторная работа «Выявление признаков сходства зародышей позвоночных животных»                           | 1 | 0.5 |  |
| 72 | Размножение и развитие растений. Лабораторная работа «Строение органов размножения высших растений»                                   | 1 | 0.5 |  |
| 73 | История становления и развития<br>генетики как науки                                                                                  | 1 |     |  |
| 74 | Основные понятия и символы генетики. Лабораторная работа «Дрозофила как объект генетических исследований»                             | 1 | 0.5 |  |
| 75 | Закономерности наследования признаков. Моногибридное скрещивание. Практическая работа                                                 | 1 | 0.5 |  |

|    | "Изучение результатов моногибридного скрещивания у дрозофилы"                                                                                                                |   |     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| 76 | Цитологические основы моногибридного скрещивания                                                                                                                             | 1 |     |
| 77 | Анализирующее скрещивание.<br>Неполное доминирование                                                                                                                         | 1 |     |
| 78 | Дигибридное скрещивание. Практическая работа «Изучение результатов дигибридного скрещивания у дрозофилы»                                                                     | 1 | 0.5 |
| 79 | Цитологические основы дигибридного<br>скрещивания                                                                                                                            | 1 |     |
| 80 | Сцепленное наследование признаков                                                                                                                                            | 1 |     |
| 81 | Хромосомная теория<br>наследственности                                                                                                                                       | 1 |     |
| 82 | Генетика пола                                                                                                                                                                | 1 |     |
| 83 | Генотип как целостная система                                                                                                                                                | 1 |     |
| 84 | Генетический контроль развития растений, животных и человека                                                                                                                 | 1 |     |
| 85 | Изменчивость признаков. Виды изменчивости                                                                                                                                    | 1 |     |
| 86 | Модификационная изменчивость                                                                                                                                                 | 1 |     |
| 87 | Вариационный ряд и вариационная кривая. Лабораторная работа «Исследование закономерностей модификационной изменчивости. Построение вариационного ряда и вариационной кривой» | 1 | 0.5 |

| 88 | Генотипическая изменчивость.<br>Комбинативная изменчивость                                                     | 1 |     |  |
|----|----------------------------------------------------------------------------------------------------------------|---|-----|--|
| 89 | Мутационная изменчивость. Практическая работа «Мутации у дрозофилы (на готовых микропрепаратах)»               | 1 | 0.5 |  |
| 90 | Закономерности мутационного процесса. Эпигенетика и эпигеномика                                                | 1 |     |  |
| 91 | Генетика человека. Практическая работа «Составление и анализ родословной»                                      | 1 | 0.5 |  |
| 92 | Методы медицинской генетики                                                                                    | 1 |     |  |
| 93 | Значение медицинской генетики в предотвращении и лечении генетических заболеваний человека                     | 1 |     |  |
| 94 | Основные понятия селекции. Лабораторная работа «Изучение сортов культурных растений и пород домашних животных» | 1 | 0.5 |  |
| 95 | Методы селекционной работы. Лабораторная работа «Изучение методов селекции растений»                           | 1 | 0.5 |  |
| 96 | Достижения селекции растений и животных. Практическая работа «Прививка растений»                               | 1 |     |  |
| 97 | Сохранение, изучение и использование генетических ресурсов                                                     | 1 |     |  |
| 98 | Биотехнология как наука и отрасль производства. Практическая работа «Изучение объектов биотехнологии»          | 1 | 0.5 |  |

| 99  | Основные направления синтетической биологии                  | 1   |   |      |  |
|-----|--------------------------------------------------------------|-----|---|------|--|
| 100 | Хромосомная и генная инженерия                               | 1   |   |      |  |
| 101 | Медицинские биотехнологии                                    | 1   |   |      |  |
| 102 | Резервный урок. Повторение, обобщение, систематизация знаний | 1   |   |      |  |
| ,   | Е КОЛИЧЕСТВО ЧАСОВ ПО<br>РАММЕ                               | 102 | 0 | 13.5 |  |